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Solution to Exercise 5

1. Find the partial derivatives of the following functions:

(a) (xy − 5z)/(1 + x2) ,

(b) x/
√
x2 + y2 ,

(c) arctan y/x ,

(d) log((t+ 1)3 + ts2) ,

(e) sin(xy2z3) ,

(f) |x|α, x = (x1, · · · , xn) .

Solution. (a)
∂

∂x
=
y − x2y + 10xz

(1 + x2)2
,

∂

∂y
=

x

1 + x2
,

∂

∂z
=
−5

1 + x2
.

(b)
∂

∂x
=

y2

(x2 + y2)3/2
,

∂

∂y
=

−xy
(x2 + y2)3/2

.

(c)
∂

∂x
=

−y
x2 + y2

,
∂

∂y
=

x

x2 + y2
.

(d)
∂

∂t
=

3(t+ 1)2 + s2

(t+ 1)3 + ts2
,

∂

∂s
=

2ts

(t+ 1)3 + ts2
.

(e)
∂

∂x
= y2z3 cosxy2z3 ,

∂

∂y
= 2xyz3 cosxy2z3 ,

∂

∂z
= 3xy2z2 cosxy2z3 .

(f)
∂

∂xj
= αxj |x|α−2, j = 1, · · · , n.

2. Verify fxy = fyx for the following functions:

(a) x cos y + e2y ,

(b) x log(1 + y2)− sin(xy) ,

(c) (x+ y)/(x5 − y9) .

Solution. Omitted.

3. Consider the function

f(x, y) =
xy(x2 − y2)
x2 + y2

, (x, y) 6= (0, 0) ,

and f(0, 0) = 0. Show that fxy and fyx exist but are not equal at (0, 0).

Solution. For (x, y) 6= (0, 0),

fx =
x4y + 4x2y3 − y5

(x2 + y2)2
,

fy =
x5 − 4x3y2 − xy4

(x2 + y2)2
.
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When (x, y) = (0, 0), fx(0, 0) = 0 and fy(0, 0) = 0. We have

fxy(0, 0) = lim
y→0

fx(0, y)− fx(0, 0)

y − 0
= −1,

but

fyx(0, 0) = lim
x→0

fy(x, 0)− fy(0, 0)

x− 0
= 1.

They are not equal at (0, 0).

4. Find
∂3u

∂x∂y∂z
, where u(x, y, z) = exyz .

Solution. (1 + 3xyz + x2y2z2)exyz.

5. * Show that
∂m+nv

∂xm∂yn
=

2(−1)m(m+ n− 1)!(mx+ ny)

(x− y)m+n+1
,

where

v(x, y) =
x+ y

x− y
.

Solution. First show it is true for all m and n = 0 and then use induction on n.

6. *

(a) A harmonic function is a function satisfies the Laplace equation

∆u ≡
(
∂2

∂x21
+ · · ·+ ∂2

∂xn

)
u = 0 .

Show that all n-dimensional harmonic functions form a vector space.

(b) Find all harmonic functions which are polynomials of degree ≤ 2 for the two di-
mensional Laplace equations. Show that they form a subspace and determine its
dimension.

Solution. (a) Let u and v be two harmonic functions. By linearity, we have

∆(αu+ βv) = α∆u+ β∆v = 0 ,

so all harmonic functions form a vector space.

(b) Let p(x, y) = a+ bx+ cy+ dx2 + 2exy+ fy2 be a general polynomial of degree 2. If it
is harmonic,

0 = ∆p(x, y) =
( ∂2
∂x2

+
∂2

∂y2

)
p(x, y) = 2d+ 2f = 0 .

Therefore, it is harmonic if and only d = −f . Writing in the form

p(x, y) = a+ bx+ cy + d(x2 − y2) + 2exy ,

we see that the space of all harmonic polynomials of degree ≤ 2 is spanned by 1, x, y, x2−y2,
and xy. These five functions are linearly independent, so the dimension of this subspace
is 5.
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7. Consider the function
g(x, y) =

√
|xy| .

Show that gx and gy exist but g is not differentiable at (0, 0).

Solution. gx(0, 0) = limx→0
g(x, 0)− g(0, 0)

x
= 0.

Similarly, gy(0, 0) = 0. Therefore, the differential of g at (0, 0) vanishes identically. We
have

g(x, y)− 0√
x2 + y2

=

√
|xy|√

x2 + y2
,

where is clearly not convergent to 0 as (x, y)→ (0, 0). Therefore, g is not differentiable at
(0, 0).

8. Consider the function h(x, y) = 1 for (x, y) satisfying x2 < y < 4x2 and h(x, y) = 0 other-
wise. Show that hx and hy exist but h is not differentiable at (0, 0).

Solution.

hx(0, 0) = lim
x→0

h(x, 0)− h(0, 0)

x
= 0 .

hy(0, 0) = lim
y→0

h(0, y)− h(0, 0)

y
= 0 .

Therefore, hx and hy exist at (0, 0). However, h is not differentiable at (0, 0) since it is not
even continuous at (0, 0).

9. Consider the function j(x, y) = (x2 + y2) sin(x2 + y2)−1 for (x, y) 6= (0, 0) and j(0, 0) = 0.
Show that it is differentiable at (0, 0) but its partial derivatives are not continuous there.

Solution.

jx(0, 0) = lim
x→0

j(x, 0)− j(0, 0)

x
= lim

x→0
x sin

1

x2
= 0 .

Similarly, jy(0, 0) = 0. If j is differentiable at (0, 0), its differential must vanish there. We
have

∣∣∣j(x, y)− 0√
x2 + y2

∣∣∣ =
∣∣∣√x2 + y2 sin

1

x2 + y2

∣∣∣ ≤√x2 + y2 → 0 ,

as (x, y)→ (0, 0), which shows that j is differentiable at (0, 0).

Next, for (x, y) 6= (0, 0),

jx(x, y) = 2x sin
1

x2 + y2
− 2x

x2 + y2
cos

1

x2 + y2
.

When (x, 0)→ (0, 0),

jx(x, 0) = 2x sin
1

x2
− 2

x
cos

1

x2
,

which does not tend to jx(0, 0) = 0. Therefore, jx is not continuous at (0, 0). Similarly, jy
is also not continuous at (0, 0).

10. Use the Chain Rule to compute the first and second derivatives of the following functions.
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(a) f(x+ y, x− y) ,

(b) g(x/y, y/z) ,

(c) h(t, t2, t3) ,

(d) f(r cos θ, r sin θ) ,

Solution.

(a) f̃(x, y) = f(x+ y, x− y).
f̃x = fx + fy,
f̃y = fx − fy.
f̃xx = fxx + fxy + fyx + fyy = fxx + 2fxy + fyy,
f̃xy = fxx − fxy + fyx − fyy = fxx − fyy,
f̃yy = fxx − fxy − fyx + fyy = fxx − 2fxy + fyy.

(b) g̃(x, y) = g(u, v) = g(x/y, y/z).
g̃x = gu

1
y = gu(x/y, y/z) 1y ,

g̃y = gu
−x
y2

+ gv
1
z = gu(x/y, y/z)−x

y2
+ gv(x/y, y/z)

1
z ,

g̃z = gv
−y
z2

= gv(x/y, y/z)
−y
z2

.
g̃xx = guu

1
y
1
y = 1

y2
guu(x/y, y/z),

g̃xy = (guu
−x
y2

+ guv
1
z ) 1y ,

g̃yy = gu
2x
y3
− (guu

−x
y2

+ guv
1
z ) x
y2

+ gvu
1
z (−x

y2
) + gvv

1
z
1
z = gu

2x
y3

+ guu
x2

y4
− guv 2x

y2z
+ gvv

1
z2
,

g̃yz = guv
−x
y2
−y
z2
− gv 1

z2
+ gvv

1
z
−y
z2

= guv
x
yz2
− gv 1

z2
− gvv yz3 ,

g̃zz = gvv
y2

z4
.

(c) h̃(t) = h(x, y, z) = h(t, t2, t3).
h̃′(t) = hx + 2thy + 3t2hz,
h̃′′(t) = (hxx + 2thxy + 3t2hxz) + (2hy + 2t(hyx + 2thyy + 3t2hyz) + 6thz + 3t2(hzx +
2thzy + 3t2hzz)
= hxx + 4thxy + 6t2hxz + 2hy + 4t2hyy + 12t2hyz + 6thz + 9t4hzz.

(d) f̃(r, θ) = f(r cos θ, r sin θ) = f(x, y).
f̃r = fx cos θ + fy sin θ,
f̃θ = −fxr sin θ + fyr cos θ.
f̃rr = (fxx cos2 θ + fxy cos θ sin θ) + (fyx sin θ cos θ + fyy sin2 θ)
= fxx cos2 θ + 2fxy cos θ sin θ + fyy sin2 θ,
f̃rθ = (−fxxr sin θ + fxyr cos θ) cos θ + fx(− sin θ) + (−fyxr sin θ + fyyr cos θ) sin θ +
fy cos θ
= −rfxx sin θ cos θ + fxyr(cos2 θ − sin2 θ) + rfyy cos θ sin θ − fx sin θ + fy cos θ,
f̃θθ = (fxxr sin θ − fxyr cos θ)r sin θ − fxr cos θ + (−fyxr sin θ + fyyr cos θ)r cos θ −
fyr sin θ
= fxxr

2 sin2 θ − 2fxyr
2 cos θ sin θ − fxr cos θ + fyyr

2 cos2 θ − fyr sin θ.

11. * Let f(x, y) and ϕ(x) be continuously differentiable functions and define

G(x) =

∫ ϕ(x)

0
f(x, y)dy .
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Establish the formula

G′(x) =

∫ ϕ(x)

0
fx(x, y)dy + f(x, ϕ(x))ϕ′(x) .

Hint: Consider the function

F (x, t) =

∫ t

0
f(x, y)dy .

Solution. Let F (x, t) =
∫ t
0 f(x, y)dy. Then G(x) = F (x, ϕ(x)). Therefore,

G′(x) = Fx(x, ϕ(x)) + Ft(x, ϕ(x))ϕ′(x)

=

∫ ϕ(x)

0
fx(x, y)dy + f(x, ϕ(x))ϕ′(x)

12. (a) Show that the ordinary differential equation satisfied by the solution of the Laplace
equation in two dimension ∆u = 0 when u depends only on the radius, that is,

u = f(r), r =
√
x2 + y2 ,

is given by

f ′′(r) +
1

r
f ′(r) = 0 .

(b) Can you find all these radially symmetric harmonic functions?

Solution.

(a) Write u(x, y) = f(
√
x2 + y2). Then ∆u = 0 is turned into

f ′′(r) +
1

r
f ′(r) = 0 .

(b) This equation can be written as (rf ′)′ = 0 which is readily integrated to rf ′ = c1 for
some constant c1. i.e.

f ′ =
c1
r
.

We conclude that all solutions are given by f(r) = c1 log r + c2 for some constants
c1, c2.

13. (a) Show that the ordinary differential equation satisfied by the solution of the Laplace
equation in three dimension ∆u = 0 when u depends only on the radius, that is,

u = f(r), r =
√
x2 + y2 + z2 ,

is given by

f ′′(r) +
2

r
f ′(r) = 0 .

(b) Can you find all these radially symmetric harmonic functions?

Solution. u(x, y, z) = f(
√
x2 + y2 + z2). Then ∆u = 0 is turned into

f ′′(r) +
2

r
f ′(r) = 0 .

This equation can be written as (r2f ′)′ = 0 which is readily integrated to r2f ′ = −c1 for

some constant c1. We conclude that all solutions are given by f(r) =
c1
r

+ c2 for some

constants c1, c2.
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14. Consider the one dimensional heat equation

ut = uxx .

(a) Show that u(x, t) = v(y), y = x/
√
t, solves this equation whenever v satisfies

vyy +
1

2
yvy = 0 .

(b) Show that u(x, t) = ext+2t3/3w(y), y = x+t2, solves this equation whenever w satisfies

wyy = yw .

Solution. (a) We have

ut = −1

2

x

t3/2
vy, ux =

1√
t
vy, uxx =

1

t
vyy ,

and the result follows.

(b) Let E = ext+2t3/3. We have

ut = ((x+ 2t2)w + 2twy)E, ux = (tw + wy)E, uxx = (t2w + 2twy + wyy)E ,

and the results follows.

15. * Let u be a solution to the two dimensional Laplace equation. Show that the function

v(x, y) = u

(
x

x2 + y2
,

y

x2 + y2

)
also solves the same equation. Hint: Use ∆ log r = 0 where r =

√
x2 + y2.

Solution. Let r = (x2 + y2)1/2. We have

vx = ux(log r)xx + uy(log r)xy,

vxx =
(
uxx(log r)xx + uxy(log r)xy

)
(log r)xx + ux(log r)xxx+(

uyx(log r)xx + uyy(log r)xy
)
(log r)xy + uy(log r)xxy ,

vy = ux(log r)xy + uy(log r)yy ,

vyy =
(
uxx(log r)xy + uxy(log r)yy

)
(log r)xy + ux(log r)xy+(

uxy(log r)xx + uyy(log r)yy
)
(log r)yy + uy(log r)yyy .

The key is ∆ log r = 0. Using it we have

∆v(x, y) =
(
(log r)2xx + (log r)2xy

)
∆u(x/(x2 + y2)1/2, y/(x2 + y2)1/2),

and the desired conclusion follows. This formula shows how to get a new harmonic function
from an old one. It is called the Kelvin’s transform.
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16. * Express the differential equation

y
∂z

∂x
− x∂z

∂y
= 0 ,

in the new variables
ξ = x, η = x2 + y2.

Can you solve it?

Solution. Write z(x, y) = z̃(ξ, η) = z̃(x, x2 + y2). Using zx = z̃ξ + 2xz̃η and zy = 2yz̃η to
get

y
∂z

∂x
− x∂z

∂y
= y(z̃ξ + 2xz̃η)− x(2yz̃η) = yz̃ξ .

The equation becomes yz̃ξ = 0, i.e. z̃ depends on η only. The general solution is
f = f(x2 + y2), i.e. radially symmetric.

17. Express the one dimensional wave equation

∂2f

∂t2
− c2∂

2f

∂x2
= 0 , c > 0 a constant ,

in the new variables
ξ = x− ct, η = x+ ct .

Then show that the general solution to this equation is

f(x, y) = ϕ(x− ct) + ψ(x+ ct) ,

where ϕ and ψ are two arbitrary twice differentiable functions on R.

Solution. Write f(x, t) = f̃(ξ, η) = f̃(x−ct, x+ct). We have fx = f̃ξ+f̃η, ft = −cf̃ξ+cf̃η,
fxx = f̃ξξ + 2f̃ξη + f̃ηη, and ftt = c2f̃ξξ − 2c2f̃ξη + c2f̃ηη.

Therefore,

∂2f

∂t2
− c2∂

2f

∂x2
= (c2f̃ξξ − 2c2f̃ξη + c2f̃ηη)− c2(f̃ξξ + 2f̃ξη + f̃ηη) = −4c2f̃ξη.

The differential equation is transformed to the new equation

f̃ξη = 0.

Now, (f̃ξ)η = 0 implies f̃ξ is independent of η. Therefore, f̃ξ = ϕ1(ξ) for some ϕ1 and
hence f̃ =

∫
ϕ1(ξ) + ϕ2(η), i.e. f(x, y) = ϕ(ξ) + ψ(η).

18. Consider the Black-Scholes equation

Vt +
1

2
σ2x2Vxx + rxVx − rV = 0 .

(a) Show that by setting V (x, t) = w(y, τ), y = log x, σ2t = −2τ , the equation is turned
into

−wτ + wyy +
(2r

σ2
− 1
)
wy −

2r

σ2
w = 0 .



Summer 2017 MATH2010 8

(b) Show that further by setting w(y, τ) = eαy+βτu(y, τ), with suitable α and β, the
equation becomes the heat equation

uτ − uyy = 0 .

Solution. (a) By a direct computation based on

Vx = wy
1

x
, Vxx = wyy

1

x2
− wy

1

x2
, Vt =

−σ2

2
wτ .

(b) With a further change of variables, the equation in (a) is transformed into

(−βu− uτ ) + (uyy + 2αuy + α2u) +
(2r

σ2
− 1
)

(αu+ uy)−
2r

σ2
u = 0 .

By choosing α and β according to

2α+
2r

σ2
− 1 = 0 , −β + α2 + α

(2r

σ2
− 1
)
− 2r

σ2
= 0 ,

we obtain the heat equation for u.

Note. The Black-Scholes equation is a model on option pricing. Here V stands for the price
of an European put or call. Myron Scholes was awarded the Nobel prize in economics in
1997 together with Robert Merton for proposing this model. Black did not share the honor
for he died already.

19. A polynomial P is called a homogeneous polynomial if all terms have the same combined
power, that is, there is some m such that P (tx) = tmP (x) for all t > 0. Establish Euler’s
Identity

n∑
j=1

xj
∂P

∂xj
= P (x) .

Verify it for the following homogeneous polynomials:

(a) x2 − 3xy + y2, and

(b) x15 − x10y3z2 + 6y14z .

Solution. By the homogenity, P (tx) = tmP (x) for all t > 0. Differentiate both sides
with respect to t. The left hand side is equal to

∂

∂t
P (tx1, ..., txn) = x1

∂P

∂x1
(tx) + ...+ xn

∂P

∂xn
(tx) .

The right hand side is = mtm−1P (x). Setting t = 1, we have

n∑
j=1

xj
∂P

∂xj
= P (x) .

(a) It is equal to x(2x− 3y) + y(−3x+ 2y) = 2(x2 − 3xy + y2), and

(b) It is equal to x(15x14 − 10x9y3z2) + y(−3x10y2z2 + 84y13z) + z(−2x10y3z + 6y14 =
15(x15 − x10y3z2 + 6y14z) .
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20. An open set D is called connected if for every x, y ∈ D, there exists a parametric curve
lying in D connecting x and y. Show that a differentiable function f in an open, connected
set with vanishing partial derivatives must be a constant. Hint: Use a regular parametric
curve to connect x to y and consider the composite of this curve with f . Chain Rule will
do the rest.

Solution. It suffices to show that for any x, y ∈ D, f(x) = f(y). By connectedness of D,
there exists a regular curve γ(t) such that γ(0) = x and γ(1) = y. Let φ(t) = f(γ(t)) =
f(γ1(t), ..., γn(t)). By the chain rule,

φ′(t) =
∂f

∂x1
(γ(t))γ′1(t) + ...+

∂f

∂xn
(γ(t))γ′n(t) = 0 ,

for all t. Therefore, φ(t) is constant function, i.e. f(γ(0)) = f(γ(1)), and hence f(x) =
f(y). This implies f is a constant function.

21. Find the directional derivative of each of the following functions at the given point and
direction:

(a) x2 + y3 + z4, (3, 2, 1); (−1, 0, 4)/
√

17 .

(b) exy + sin(x2 + y2), (1,−3); (1, 1)/
√

2 .

Solution.

(a)

Dξf = ξ · ∇f

=
(−1, 0, 4)√

17
· (2x, 3y2, 4z3)

∣∣∣
(3,2,1)

=
(−1, 0, 4)√

17
· (6, 12, 4)

=
10√
17
.

(b)

Dξf = ξ · ∇f

=
(1, 1)√

2
· (yexy + 2x cos(x2 + y2), xexy + 2y cos(x2 + y2))

∣∣∣
(1,−3)

=
(1, 1)√

2
· (−3e−3 + 2 cos 10, e−3 − 6 cos 10)

=
−2e−3 − 4 cos 10√

2

= −
√

2(e−3 + 2 cos 10).

22. Find the directional derivative of the function x2 − y2 at (1, 1) whose direction makes an
angle of degree 60◦ with the x-axis.

Solution. The direction is given by (cos 60◦, sin 60◦) =
1

2
(1,
√

3). Therefore, the direc-

tional derivative is
1

2
(1,
√

3) · (2x,−2y)|(1,1) =
1

2
(1,
√

3) · (2,−2) = 1−
√

3.
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23. Let g(x, y) = x2 − xy + y2. Find

(a) the direction along which it increases most rapidly.

(b) the direction along which it decreases most rapidly.

(c) the directional at which its directional derivative vanishes.

Solution. We have ∇g = (2x− y,−x+ 2y). Let |∇g| =
√

(2x− y)2 + (−x+ y)2.

(a) The direction is given by ∇g/|∇g|.
(b) The direction is given by −∇g/|∇g|.
(c) Let ξ = (ξ1, ξ2) be a direction such that (ξ1, ξ2) · (2x − y,−x + 2y) = 0. We may

choose ξ = (ξ1, ξ2) = (−x+ 2y,−2x+ y)/|∇g| to have the above equality holds true.

24. Can you find a function whose directional derivative along every direction exists and all
equal at (0, 0) but it is not differentiable there ? Hint: An example can be found in a
previous problem.

Solution. Consider the function f in Problem 8. Since f eventually vanishes along any
direction from (0, 0), Dξf = 0 for all direction ξ. However, f is not differentiable at (0, 0).

25. (a) Let f(x, y) be a function defined in the first quadrant {(x, y) : x, y ≥ 0}. Propose a
definition of the partial derivatives of f at (x, 0), x > 0 and at (0, 0).

(b) Let g(x, y) be a function defined in the set {(x, y) : 0 ≤ x ≤ y}. Propose a definition
of the partial derivatives of g at (0, 0).

Solution. (a) For (x, 0), x > 0, the partial derivative of f in x is defined as usual, but
now the partial derivative in y is

∂f

∂y
(x, 0) = lim

h→0+

f(x, h)− f(x, 0)

h
,

that is, we restrict to the range where y is positive. Similarly, define

∂f

∂x
(0, 0) = lim

h→0+

f(h, 0)− f(0, 0)

h
,

∂f

∂y
(0, 0) = lim

h→0+

f(0, h)− f(x, 0)

h
.

(b) Let ξ = (1, 1)/
√

2. Using the relation

∂f

∂ξ
=

√
2

2

∂f

∂x
+

√
2

2

∂f

∂y
,

we define
∂f

∂x
(0, 0) =

√
2
∂f

∂ξ
(0, 0)− ∂f

∂y
(0, 0) .

26. Use the differential of an appropriate function to obtain an approximate error estimate
and then compare it with the actual one. You may use a calculator.



Summer 2017 MATH2010 11

(a) sin 29◦ × tan 46◦ .

(b)
1.032

(0.98)1/3(1.05)3/4
.

(c)
√

(3.1)2 + (4.2)2 + (11.7)2 .

Solution.

(a) Let f(θ, φ) = sin θ tanφ; (θ, φ) = (30◦, 45◦) = (π/6, π/4); (dθ, dφ) = (−1◦, 1◦) =
(−π/180, π/180).
Therefore,

df = cos θ tanφdθ + sin θ sec2 φdφ

=

√
3

2
× 1× (− π

180
) +

1

2
× 1

(
√
2
2 )2
× π

180

= (1−
√

3/2)
π

180
.

and hence the approximate value is given by

f(π/6, π/4) + (1−
√

3/2)
π

180
=

1

2
+ (1−

√
3/2)

π

180
.

27. The height and the radius of the base of a cylinder are measured with error up to 0.1 and
0.2 respectively. Find the approximate and exact maximum error of its volume.

Solution. Let the volume be V , the radius be r and the height be h. They are related by

V = πr2h

Differentiating both sides yield

dV = 2πrhdr + πr2dh

= 2πrh(0.1r) + πr2(0.2h)

= 0.4V

Therefore, the approximate error is given by 0.7V/V = 0.4. The exact error is

π(r + 0.1r)2(h+ 0.2h)− πr2h = 0.452V .

28. A horizontal beam is supported at both ends and supports a uniform load. The deflection
at its midpoint is given by

S =
k

wh3
,

where w and h are the width and height respectively of the beam and k is some constant
depending on the beam. Show that

dS = −S
( 1

w
dw +

3

h
dh
)
.
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If S = 1 in. when w = 2 in. and h = 4 in., approximate the deflection when w = 2.1 in.
and h = 4.1 in.. Then compare your approximation with the actual value.

Solution. dS comes from a direct differentiation.

Now since S(2, 4) = 1, we find k = 2× 43. Using dw = 0.1, dh = 0.1,

dS = −S
(0.1

2
+

3

4
0.1
)

= −0.125 .

The exact error is
k

2.1× (4.1)3
− 1 = −0.1156 .

29. The point (1, 2) lies on the curve defined by the equation

f(x, y) = 2x3 + y3 − 5xy = 0 .

Approximate the y-coordinate of the nearby point (x, y) on this curve which x = 1.2.

Solution. The relation defined a function y = g(x):

2x3 + g3(x)− 5xg(x) = 0 .

The y-coordinate is given by g(1.2). Now we will obtain the approximate value by using
the differential at x = 1. Differentiating it in x:

6x2 + 3g2(x)g′(x)− 5g(x)− 5xg′(x) = 0,

which gives

g′(x) =
6x2 − 5g(x)

5x− 3g2(x)
.

So g′(1) = 4/7 and dg = g′(1)(1.2 − 1) = 4/35 = 0.1143. Therefore, the approximate
y-coordinate is given by 2.1143.

30. Suppose that T = x(ey + e−y) where x = 2, y = log 2 with maximum possible errors 0.1 in
x and 0.02 in y. Estimate the maximum possible induced error in the computed value of T .

Solution. We have

dT = (ey + e−y)dx+ x(ey − e−y)dy

=

(
2 +

1

2

)
× 0.1 + 2

(
2− 1

2

)
× 0.02

= 0.31 .


